Developmental- and eye-specific transcriptional control elements in an intronic region of a Ca(2+)-activated K+ channel gene.

نویسندگان

  • R Brenner
  • N Atkinson
چکیده

The range of electrical properties that a neuron or muscle cell can manifest is determined by which ion channel genes it expresses and in what amounts. The Drosophila slowpoke Ca(2+)-activated K+ channel gene has four distinct promoters. Here we assess the role that a downstream intronic region, called the C2/C3 region, plays in modulating Promoter C1 and Promoter C2 activity. Promoter C1 and Promoter C2 appear to be responsible for all neuronal and muscle expression, respectively. Transgenic flies were used to determine the expression pattern from each promoter in the presence and absence of the C2/C3 region. Deletion of this region silences Promoter C1 in adult but not larval CNS and causes a substantial reduction in Promoter C2 activity in adult but not larval muscle. The C2/C3 region also activates Promoter C1 in the animal's eye. By placing the C2/C3 region adjacent to a basal HSP70 promoter we have demonstrated that it contains elements that can specifically activate a heterologous promoter in the eye and in adult but not larval muscle. These results demonstrate that the C2/C3 region has a important role in regulating slowpoke developmental expression in the CNS and musculature and in regulating eye expression.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tissue-specific expression of a Ca(2+)-activated K+ channel is controlled by multiple upstream regulatory elements.

The electrical properties of a cell are produced by the complement of ion channels that it expresses. To understand how ion-channel gene expression is regulated, we are studying the tissue-specific regulation of the slowpoke (slo) Ca(2+)-activated K+ channel gene. This gene is expressed in the central and peripheral nervous system, in midgut and tracheal cells, and in the musculature of Drosoph...

متن کامل

Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs.

This study characterizes regulatory elements of collagen 2 alpha 1 (col2a1) in Xenopus that enable transgene expression in cartilage-forming chondrocytes. The reporters described in this study drive strong cartilage-specific gene expression, which will be a valuable tool for further investigations of Xenopus skeletal development. While endogenous col2a1 mRNA is expressed in many embryonic tissu...

متن کامل

Transcriptional control of Ca(2+)-activated K(+) channel expression: identification of a second, evolutionarily conserved, neuronal promoter.

Neuronal signaling properties are largely determined by the quantity and combination of ion channels expressed. The Drosophila slowpoke gene encodes a Ca(2+)-activated K(+) channel used throughout the nervous system. The slowpoke transcriptional control region is large and complex. To simplify the search for sequences responsible for tissue-specific expression, we relied on evolutionary conserv...

متن کامل

Intronic CA-repeat and CA-rich elements: a new class of regulators of mammalian alternative splicing.

We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding spec...

متن کامل

PPARγ regulates resistance vessel tone through a mechanism involving RGS5-mediated control of protein kinase C and BKCa channel activity.

RATIONALE Activation of peroxisome proliferator-activated receptor-γ (PPARγ) by thiazolidinediones lowers blood pressure, whereas PPARγ mutations cause hypertension. Previous studies suggest these effects may be mediated through the vasculature, but the underlying mechanisms remain unclear. OBJECTIVE To identify PPARγ mechanisms and transcriptional targets in vascular smooth muscle and their ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 177 2  شماره 

صفحات  -

تاریخ انتشار 1996